The kadison-singer property
70,66 $

The kadison-singer property

MARCO STEVENS


The kadison-singer property

MARCO STEVENS

70,66 $ 70,66 $
Régulier: 70,66 $
Rabais: 0,00 $ (0%)
Livre numérique non disponible
Résumé
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects of quantum physics, as is explained in the foreword by Klaas Landsman. 
The book starts with an accessible introduction to the concept of states and continues with a detailed proof of the classification of maximal Abelian von Neumann algebras, a very explicit construction of the Stone-Cech compactification and an account of the recent proof of the Kadison-Singer problem. At the end accessible appendices provide the necessary background material.

This elementary account of the Kadison-Singer conjecture is very well-suited for graduate students interested in operator algebras and states, researchers who are non-specialists of the field, and/or interested in fundamental quantum physics.

Détails
Titre
The kadison-singer property
Auteur
Prix
70,66 $
Sujet
Format Poche
Non
Langue
Français/French
Date de publication
2016-11-07
ISBN
9783319477022
Code Interne
2171235
Numéro de produit
2171235
Format numérique
pdf
Disponibilité
AD AE AM AQ AR AS AT AU AX BA BB BE BG BH BL BM BN BO BR BS BV BZ CA CH CK CL CN CO CR CU CW CX CY CZ DE DK DM DO DZ EC EE ES FI FK FO FR GB GD GF GG GI GL GP GR GT GY HK HM HN HR HT HU ID IE IL IM IN IO IR IS IT JE JM JP KH KM KN KR KY LA LB LC LI L
Protection
Adobe DRM
Entrepôt Numérique
NUMILOG

Notre conseil

Avant de vous déplacer, nous vous recommandons de téléphoner au magasin pour vérifier le stock.

Ville: (Changer).

exemplaire(s)
Ce produit est actuellement non disponible en magasin.
Nous n'avons pas pu trouver une succursale pour le code postal donné. Veuillez en essayer un autre.